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Ideal and Optimum Cascades
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1Moscow Engineering Physics Institute (State University), Department of
Molecular Physics, Kashirskoe Shosse, Moscow, Russia

2University of Virginia, Department of Mechanical and Aerospace Engineers,
Engineer’s Way, Charlottesville, VA, USA

Abstract: In gaseous diffusion and gas centrifuge uranium enrichment plants,
separating units are connected in cascades. The stage separation factor in gaseous
diffusion is close to unity, while in a gas centrifuge it is much larger. Ideal cascades
for separating binary mixtures have been designed with no mixing of the species.
A new concept, particularly applicable to cascades with large stage separation fac-
tors, is called the ‘‘optimum’’ cascade. These cascades allow mixing, but the value
of the total flow as found in some cases is less than in corresponding ideal cas-
cades. In this paper, ideal and optimum cascades are discussed and compared.

Keywords: Binary isotope mixture, cascade, ideal cascade

INTRODUCTION

Herbst and McCandles first discussed the distinction between the no-
mixing separation cascade, called the ideal cascade, and the cascade with
the minimum total interstage flow (1,2). The numerical method to find
parameters of the cascade with minimum total flow compared with that
of an ideal one was published by Palkin (3,4). The reason for the differ-
ence of the total flows in these two cases, which sometimes can be notice-
able, was suggested in a presentation of the current authors at the 8th
Workshop on Separation Phenomena in Liquids and Gases held in
Oak Ridge, Tennessee, USA, October 12–16, 2003. Subsequently, new
data obtained in other labs (5,6) completely confirmed the conclusions
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we presented. Whereas the 8th SPLG Proceedings have been distributed
only on CD for the approximately 40 workshop participants, we decided
to publish our talk hereunder to reach a larger audience interested in cas-
cade theory.

In the design of multistage installations (cascades) for uranium iso-
tope separation the problem arises of minimization of feed flows at all
cascade elements. For this purpose, K.Cohen (7,8) developed the concept
of an ideal cascade. Originally, the theory of an ideal cascade was
developed for the overall separation factors at cascade stages close to
unity (so-called ‘‘fine’’ separation) that corresponded to the gaseous dif-
fusion separation process. It has been shown that in an ideal cascade the
total interstage flow is minimized. As a result, the size of the separation
cascade (total number of separation elements) and the energy consump-
tion in such a cascade are also minimized. One of the main features of an
ideal cascade is the absence of thermodynamic losses from concentrations
mixing in merged flows. Such cascades have been called no-mixing
cascades. The theory has been broadened for the cases where the overall
separation factors can vary with stage numbers (9–11) and where the
total separation factors that can be much greater than unity, which is
distinctive for gas centrifuges.

However, at this time, all features of ideal cascades with arbitrary
stage separation factor have not been made absolutely clear. In parti-
cular, no one has been able to prove that the no-mixing condition
will provide the best characteristics of an ideal cascade in which overall
separation factors of the stages differ considerably from unity.

Also, note that in the classical theory of isotope separation in cas-
cades, it is shown that in the common case the necessary and sufficient
condition for cascade ideality is the following equality (7–8):

as ¼ bsþ1; s ¼ 1; 2; . . . N � 1; ð1Þ

as ¼ R0s=Rs; bs ¼ Rs=R00s ; ð2Þ

Rs ¼ Cs=1� Cs; R0s ¼ C0s=1� C0s; R00s ¼ C00s =1� C00s ð3Þ

where as and bsþ1 are heads and tails separation factors for a s-th and
(sþ 1)-th stages, respectively; s is the current stage number; N is the total
number of stages in a cascade; Cs;C

0
s;C

00
s are the concentrations of a

key component in the feed flow to s-th stage and outlet flows from this
stage enriched and depleted in a concentration of a key component,
respectively.

For one particular case, an ideal cascade may be built with symmetric
separation stages (as ¼ bs) (9–11).
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In the papers quoted above (3,4), the idea to build a cascade for
uranium isotope separation with arbitrary separation factors for cascade
stages that would have a total flow lower than in an ideal cascade has
been published. There it was presented (and it was strange enough at
the first glance) that such a cascade can be made and (what was especially
unusual) it does not demand realization of the indispensable condition
(1), which means assumption of no-mixing of concentrations in merged
flows. This immediately raised the question about the correlation in the
general case between a classical ideal cascade and the possible class of
such an optimum cascade. Moreover, based on calculations presented
by the author of (3,4), the claim was made that the total flow of an opti-
mum cascade may be lower than that of an ideal one even in the presence
of thermodynamic losses from concentration mixing. This resulting claim
led to questioning of the mathematical model for the calculation of an
optimum cascade, and in particular, the part of the model related to
the transition from a system of finite-difference equations to differential
equations for arbitrary separation factors at the cascade stages. The
present paper is devoted to the investigation of these problems.

CLASSIFICATION FOR IDEAL CASCADES

Consider the ideal countercurrent symmetrical cascade for separation of
a binary mixture of uranium isotopes comprising N � f þ 1 separation
stages in the enriching section of the cascade and f � 1 stages in its strip-
ping part. The overall separation factor defined as

q ¼ R0=R00 ¼ a � b; ð4Þ

is identical for each cascade stage and differs considerably from unity.
Taking into account the non-mixing conditions (3) and (4), one will

get the following relations

a1 ¼ b2 ¼ a3 ¼ b4 ¼ . . .

b1 ¼ a2 ¼ b3 ¼ a4 ¼ . . .
ð5Þ

Beginning calculation of the cascade with its first stage we will obtain:

R1 ¼ R001 � b1; ð6Þ

where R001 ¼ RW is the relative concentration of the key component in the
waste flow W of the cascade. For the second and the following stages of
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the cascade, using the relations (5) one will get:

R2 ¼ R01 ¼ a1R1 ¼ a1b1RW ¼ RW q;

R3 ¼ R02 ¼ a2R2 ¼ a2qRW ¼ RW qb1;

R4 ¼ R03 ¼ a3R3 ¼ a1b1RW q ¼ RW q2;

. . .

ð7Þ

In the general case the formulae for calculation of the relative concentra-
tions over the cascade stages will be as follows:

for odd stages Rs ¼ RW q
s�1

2 b1; ð8Þ

for even stages Rs ¼ RW q
s
2 ð9Þ

Beginning calculation of the cascade with the stage where a feed flow F
enters, one can write the expressions for calculation of concentrations
in product and waste flows of the cascade in terms of the concentration
in the feed flow. As a result, the following relations depending on the
number of stages in enriching and depleting sections of the cascade will
be obtained:

1type :
f � 1 is even : RP ¼ RF q

N�fþ1
2 ,

N � f þ 1 is even : RW ¼ RF q�
f�1

2 b�1
1

(
;

2type :
f � 1 is even : RP ¼ RF q

N�fþ2
2 b�1

1 ,

N � f þ 1 is odd : RW ¼ RF q�
f�1

2 b�1
1

(
;

3type :
f � 1 is odd : RP ¼ RF q

N�fþ1
2 ,

N � f þ 1 is even : RW ¼ RF q�
f
2

(
;

4type :
f � 1 is odd : RP ¼ RF q

N�f
2 b1,

N � f þ 1 is odd : RW ¼ RF q�
f
2,

(
ð10Þ

where RF ;RP;RW are the relative concentrations of the key component
in the feed F, product P, and waste W flows, respectively.

Hereafter, for convenience we will use absolute concentrations
instead of the relative ones introduced above.

Combining relations (10) together with the no-mixing conditions as
follows

C0s�1 ¼ Cs ¼ C00sþ1; ð11Þ
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and the material balance in every cross section of the cascade

hsLS � ð1� hsþ1ÞLsþ1 ¼
P� for enricher

�W � for stripper
; ð12Þ

one can obtain the standard system (12) for an ideal cascade given by the
following equations (13)

d0s ¼ Csþ1 � Cs ¼
as � 1

1þ ðas � 1ÞCs
Csð1� CsÞ;

hs ¼
bs � 1

q� 1
½1þ ðas � 1ÞCs�;

Ls ¼
PðCP�CsÞ

hsd0s
�for enricher

WðCs�CW Þ
hsd0s

�for stripper

(

8>>>>>>>><
>>>>>>>>:

ð13Þ

with the boundary conditions

hNLN ¼ P;

ð1� h1ÞL1 ¼W :

�
ð14Þ

This system of equations allows the no-mixing cascade to be calculated, if
the value for a product flow rate from the cascade and all concentrations
in the entering and outgoing flows are given beforehand.

From relations (13), it is obvious that for the case of a small concen-
tration of a desired component and q ¼ const, the cut at the first stage of
the cascade h1 is proportional to b1.

The analysis of the expressions obtained for the relative concen-
tration in the cascade output flows allows two important conclusions
to be drawn.

1. Concentration of a key component in product and waste flows of the
cascade at fixed values of parameters N; f ; q;CF remains either con-
stant or depends on the value of the cut at the first stage of the cascade
h1. In the latter case the character of this dependence can be either a
linear or an inversely proportional one.

2. Presence or absence of the dependence of a key-component concen-
tration in product and waste flow rates on the cut h1 is determined
by a relation between the number of stages in stripping and enriching
sections of the cascade.

Note that as it follows from the boundary conditions (14), there is
some randomness in the choice of the cut at the first stage h1 during cal-
culation of the cascade. However, defining a concentration of a desired
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component in a feed flow to cascade, CF , an overall separation factor at
each of its separation stage, q, the number of stages in cascade, N, the
number of a stage where the feed flow enters, f , and the cut at the first
stage of cascade, h1, it is possible to calculate the distributions of all absol-
ute concentrations and material flows over the cascade and the cuts at
each of its stages. The calculations can be made by four various modes
in accordance with the types of the cascades (10) depending on the relation
between the number of stages in the enriching and stripping sections.

SEARCHING THE OPTIMUM PARAMETERS FOR A

SYMMETRICAL COUNTERCURRENT CASCADE

To avoid errors in the transition from discrete to continuous values in the
present work to optimize the cascade parameters, the numerical Nelder-
Mead method of optimization was applied (13). The choice of this tech-
nique was based on the fact that it allows, without introduction of any
approximations and assumptions, to find the optimum parameters of a
cascade using conventional finite-difference mass transfer equations. In
searching the optimum cascade parameters by the Nelder-Mead method
using minimization of the total flow in a cascade, the parameters of an
ideal cascade were chosen as an initial approximation.

The substance and component balance equations in the cascade
stages are written as follows:

Ls ¼ L0s þ L00s ;LsCs ¼ L0sC
0
s þ L00s C00s ; s ¼ 1;N; ð15Þ

which for interstage flows look as

L1 ¼ L002 ; L2 ¼ L01 þ L003; . . . ;Lf ¼ L0f�1 þ L00fþ1 þ F ; ð16Þ

and finally the overall separation factors at the cascade stages usually
introduce in the form as

C0s
1� C0s

=
C00s

1� C00s
¼ qsðLs; hsÞ; s ¼ 1;N: ð17Þ

The equations (14)–(17) have to be accompanied with the boundary
conditions

L00 ¼W1; C001 ¼ CW ;
L0N ¼ P; C0N ¼ CP.

�
ð18Þ

In the simplest case the qsðLs; hsÞ functions defining the dependence of the
overall separation factors from the flow entering a stage and a value of a
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stage cut may be assigned as a constant. In many separation processes,
the overall stage separation factor depends on the cut, but here we are
comparing our theory with classical theory, in which case the overall sep-
aration factor is constant. Exploring the overall separation factor varying
with cut can be done in the future.

Now we introduce the auxiliary values Ts and Js, which identify as
the transit flows of the separating isotope mixture and the flow of a target
component, respectively. They define the transfer of a separating sub-
stance as a whole and a target component in the direction to a product
flow from a cascade and in case of the countercurrent symmetric cascade
one may find them as a difference of two flows through the arbitrary
cross-section between cascade stages

Ts ¼ L0s�1 � L00s ; ð19Þ

Js ¼ L00s�1C0s�1 � L00s C00s ; ð20Þ

where s ¼ 2;N is a stage number on the right hand from the cross-
section.

According to the balance equations for a cascade as a whole in the
product (stripper) section the enriched fraction at the previous stage
exceeds the depleting fraction at the next one on the value of P. For
the corresponding flows of the target component this difference is PCP.
In the rectifier section the analogue values are negative: �Wb �WCW .
Therefore the transit flows are equal to

Ts ¼ �W ; Js ¼ �WCW for 1 < s � f ; ð21Þ

Ts ¼ P; Js ¼ PCP for f < s � N: ð22Þ

Using the definition for overall separation factor and transit flows the
following recurrent formulas to define concentration can be obtained

ðIÞ: c0s ¼
qc00s

1þ ðq� 1Þc00s
; s ¼ 1;N; ð23Þ

ðIIÞ: c00s ¼ c0s�1 �
Js � Tsc

0
s�1

L00s
; s ¼ 2;N: ð24Þ

Modification of a separating mixture composition as a result of a separ-
ation phenomenon in a stage follows from the formula (23). The second
recurrent formula with the transit flows results from the balance equa-
tions in the cross-section of a cascade. It links the concentration of the
enriched fraction of the previous stage with that of for depleted of the
following one.
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To calculate a cascade it is enough to define Nþ 5 parameters: four
external P;CF ;CP;CW and Nþ 1 internal ones N; f ;L002;L

00
3 ; . . . ;L00N .

Then after determining the W and F flows and calculation of transit
flows, one can find L001 and C001 from the boundary conditions for a cas-
cade as a whole. After that using the recurrent relations (23)-(24), the
concentrations in enriched and depleted fractions at all stages beginning
with the first one are found. Determining the concentration CN at the last
stage finishes the calculation procedure. Finally it is necessary to check
the boundary condition C0N ¼ CP. If it is valid it means that all para-
meters have been defined correctly and one may pass on searching other
taking interest parameters. Otherwise, one of the defined parameters
should be changed and the procedure above has to be repeated.

In searching the optimum parameters of a cascade by minimization
of its total flow, an initial guess can be chosen as the symmetrical ideal
cascade parameters.

In the mathematical terms the search for the most efficient cascade is
equivalent to searching for the minimum of the

P
s Ls functions on the set

of possible values for N; f ;Lsðs ¼ 1; 2; :::;NÞ that satisfy the following
conditions

C0N ¼ UðL1;L2; :::;LNÞ ¼ CP; ð25Þ

where the function U represents the procedure to calculate the component
concentrations over the cascade stages.

The procedure of optimization was carried out in four steps.
In the first step the number of stages N and the stage f where the feed

flow enters an ideal cascade that will provide the defined concentrations in
product and waste flows or ones that will be close to them are searched.

In the second step an ideal cascade with the values for N and f found
in the first step are calculated. In the result, the distribution of the
material flow over a cascade is defined.

Remark 1. If a few pairs for the values N and f were found, the cal-
culation of an ideal cascade is carried out for each pair.

In the third step using the flow distribution in an ideal cascade as an
initial approximation and the Nelder-Mead method, one minimizes the
function of N variables, which are the feed flow rates at separation stages
Lsð1; 2; :::;NÞ. The structure of this function is as follows:

FðLsÞ ¼
X

s

Ls

 !
calc

þ

P
s

Ls

� �
id

Kid
Kcalc � Kdef

�� ��; ð26Þ
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where ð
P

s LsÞid and ð
P

s LsÞcalc are the total flows of an ideal cascade
chosen as an initial approximation and an ideal cascade calculated on
the current iteration, respectively.

The ratio Kid ¼ ð CP

1�CP =
CW

1�CWÞ is the separation factor of an ideal cas-
cade, and Kcalc;Kdef are the separation factors for a cascade calculated on
the current iteration and for a cascade calculated by the values of concen-
trations of a key component in product and waste flows given before-
hand, respectively.

Remark 2. The distributions of concentrations and the values for cuts
over the cascade stages are calculated on each iteration.

In the fourth step the distributions of concentrations and values of
cuts over stages of the cascade which have the minimum total flow among
all the cascades providing the given concentrations in product and waste
flows (‘‘the optimal cascade’’ in the terms of the present work) are
determined.

Remark 3. If the search was carried out for a few pairs of N and f, the
optimal cascade among all investigated will be those for which the total
flow is the minimum.

With the help of the algorithm developed, computing experiments for
calculation of the optimal cascades and comparison with ideal cascades
were carried out.

COMPARISON OF OPTIMUM AND IDEAL CASCADES

To compare the characteristics of optimum and ideal cascades, a series of
calculations with fixed external parameters was made. Two types of cas-
cades were chosen whose features are the most interesting from the prac-
tical point of view.

. the cascade with an even number of stages in the enriching section and
odd number of stages in the stripping section (the type 2);

. the cascade with an even number of stages in the enriching and strip-
ping sections (type 1).

The external cascade parameters were selected as follows:

1. the product flow rate to a cascade P ¼ 1g=s;
2. the concentration of a key component in a feed flow CF ¼ 0:711%;
3. the concentration of a key component in a product flow CP ¼

4:4%;
4. the overall separation factor at all cascade stages q ¼ 1:592:
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With the choice of N=9 and f=2, the minimum flow cascade was found
to be the ideal cascade of type 3 while for N=10 and f=3, the minimum
flow cascade was the ideal cascade of type 1 that satisfied both conditions
given above. The results of the calculations are presented in Table 1 for
the type 2 cascade and in Table 2 for the type 1 cascade. The numerical
results for ideal and optimum cascade were identical for each of these cas-
cade types. It was obtained that the minimum total flow in the cascades
coincides with the values calculated for the ideal type 2 and 1 cascades

Table 1. Coincident parameters for the ideal type 2 (N ¼ 9, f ¼ 2) cascade of
symmetrical separation elements and the optimum cascade

Stage L, g=s h C, % Cþ , % C� , %

1 25.14 0.443 0.56 0.71 0.45
2 45.12 0.443 0.71 0.90 0.56
3 34.10 0.443 0.90 1.13 0.71
4 25.36 0.443 1.13 1.42 0.90
5 18.42 0.444 1.42 1.78 1.13
6 12.94 0.444 1.78 2.24 1.13
7 8.52 0.445 2.24 2.81 1.42
8 5.03 0.445 2.81 3.52 2.24
9 2.24 0.446 3.52 4.40 2.81
L=P ¼ 176.84

The research conducted led to the conclusion that ideal and optimum cascades
coincide by the total flow for all values of the overall separation factor q.

Table 2. Coincident parameters for the ideal type 1 (N ¼ 10, f ¼ 3) cascade of
symmetrical separation elements and the optimum cascade

Stage L, g=s h C, % Cþ, % C�, %

1 18.59 0.443 0.45 0.56 0.36
2 33.37 0.443 0.56 0.71 0.45
3 45.12 0.443 0.71 0.90 0.56
4 34.10 0.443 0.90 1.13 0.71
5 25.36 0.443 1.13 1.42 0.90
6 18.42 0.444 1.42 1.78 1.13
7 12.91 0.444 1.78 2.24 1.42
8 8.52 0.445 2.24 2.81 1.78
9 5.03 0.445 2.81 3.52 2.24

10 2.24 0.446 3.52 4.40 2.81
L=P ¼ 203.66

3386 G. A. Sulaberidze et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



(
P

L=P ¼ 176:84 and
P

L=P ¼ 203:66 in Tables 1 and 2, respectively)
and reaches their values under the cut at the first stage h1 corresponding
to the case when all separation elements are operated in the symmetrical
regime ða ¼ bÞ.

A quite different picture was found in the case when the symmetry
condition for separation elements in the ideal cascade was not kept. It
is illustrated by the calculated parameters of ideal type 1 and optimum
cascades constructed by the non-symmetrical separation elements with
the same value of the overall separation factor as above (see the data
in Tables 3 and 4, respectively).

Table 3. Parameters of the ideal type 1 (N ¼ 10, f ¼ 3) cascade of non-
symmetrical separation elements

Stage L, g=s h C, % Cþ, % C�, %

1 57.74 0.836 0.45 0.48 0.30
2 61.51 0.110 0.48 0.71 0.45
3 96.13 0.836 0.71 0.76 0.48
4 89.23 0.110 0.76 1.13 0.71
5 54.02 0.837 1.13 1.20 0.76
6 49.67 0.110 1.20 1.78 1.13
7 27.50 0.837 1.78 1.90 1.20
8 24.75 0.111 1.90 2.81 1.78
9 10.72 0.837 2.81 2.99 1.90

10 8.98 0.111 2.99 4.40 2.81
L=P ¼ 477.25

Table 4. Parameters of the optimum cascade with the equal external parameters
as above

Stage L, g=s h C, % Cþ , % C� , %

1 19.05 0.529 0.39 0.48 0.30
2 35.67 0.466 0.50 0.63 0.39
3 48.20 0.469 0.65 0.81 0.51
4 39.11 0.447 0.81 1.02 0.65
5 29.31 0.437 1.03 1.30 0.82
6 21.42 0.448 1.31 1.64 1.04
7 15.39 0.441 1.65 2.08 1.32
8 10.35 0.440 2.11 2.65 1.68
9 6.32 0.437 2.70 3.39 2.16

10 2.73 0.367 3.39 4.40 2.81
L=P ¼ 277.50
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In this example the total flow of the ideal type 1 cascade exceeds that
of for the optimum one more than 50%. It is evidence that in the cascade
constructed of non-symmetric elements the non-mixing condition
as ¼ bsþ1 does not coincide with the condition of the minimum total flow.

The comparison of the results obtained in the present work with the
data of (3) allowed the authors to come to the conclusion that both
approaches give very close results for a large number of stages in a cas-
cade and overall separation factors close to unity. In the case of The
so-called ‘‘short’’ cascades and overall separation factors that differ con-
siderably from unity, the approach from (3) gives appreciable mistakes
because of the application of differential mathematics to a discrete object.

THE OPTIMUM CUT OF SEPARATING ELEMENT IN

OPTIMUM AND IDEAL CASCADES

As is known, the optimum cut providing the maximum value of the sep-
aration power for cascade stages operating in the non-symmetrical regime
with an overall separation factor that differs substantially from unity in
the case of C << 1 is defined as (10)

hopt ¼
1

ln q
� 1

q� 1
: ð27Þ

However, the cut ensuring the minimum total flow in an ideal cascade
with symmetrical separation elements (a ¼ bÞ depends on the value of
an overall separation factor in the following way (7)

hid ¼
1ffiffiffi

q
p þ 1

: ð28Þ

The corresponding dependences for hopt and hid versus a value of an over-
all separation factor at cascade stages are shown in Fig. 1.

The distinction in the values for hopt and hid is explained as follows.
When an overall separation factor at cascade stages q is close to unity, the
condition of the optimum operation of separation element and the non-
mixing condition practically coincide either in the case of symmetrical or
non-symmetrical elements. For overall separation factors q that differ
considerably from unity, in the case of the cascade made of symmetrical
elements the condition of ideality prevails over the condition of the
optimum operation for a single separation element. It leads to the situ-
ation when the total flows in ideal and optimum cascades coincide. In
contrast, in the case of non-symmetrically operated elements, the con-
dition of the optimum work of a single separation unit is much more
important than the non-mixing condition. It defines the situation when
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the total flow in an ideal cascade will be less than in the case of symme-
trically operated elements. As is evident from the dependences shown in
Fig. 1, this difference increases with growth of the magnitude of q. This
distinction is defined by the fact that connection of non-symmetrically
operated elements in a non-symmetrical scheme of a cascade leads to
strongly non-optimum conditions of elements exploitation, which are
operating with substantial underloading.

The conclusion made is confirmed by calculation of the separation
powers of stages in the ideal and optimum cascades. The calculations
are carried out for the external parameters given in Section 4.

Figure 1. Dependence of the optimum cut versus the value of the overall separ-
ation factor for 1-optimum and 2–ideal cascades.

Table 5. Parameters of the ideal type 3 cascade (N ¼ 9, f ¼ 3) of non-symmetrical
separation elements

L, g=s h C, % Cþ , % C� , % dU, g=s (dU=L) � 102

1.40 0.012 0.45 0.706 0.44 0.0207 1.48
75.51 0.981 0.706 0.71 0.45 1.2935 1.71
76.39 0.118 0.71 1.12 0.706 1.1329 1.48
43.22 0.982 1.12 1.13 0.71 0.7390 1.71
42.82 0.118 1.13 1.78 1.12 0.6364 1.48
21.97 0.982 1.78 1.79 1.13 0.3748 1.70
21.72 0.118 1.79 2.80 1.78 0.3241 1.49
8.56 0.982 2.80 2.82 1.79 0.1454 1.70
8.40 0.119 2.82 4.40 2.80 0.1261 1.50P

L=P ¼ 299.99
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For the ideal type 2 cascade of (N ¼ 9 and f ¼ 3), the following set of
parameters satisfying the given external conditions were obtained and
presented in Table 5.

The sum of the separation powers of all cascade stages is equal toP
dU ¼ 4:793 g=s and the sum of the specific separation powers is equal

to
P

dU=L ¼ 1.425 � 10�1.
The procedure of optimization that led to the parameters of the

optimum cascade is presented in Table 6.
The sum of the separation powers of all cascade stages is equal toP

dU ¼ 4.926g=s, which is only a bit higher than in the ideal cascade. How-
ever, the sum of the specific separation powers of all cascade stages is equal toP

dU=L ¼ 2.392 � 10�1, which is noticeably higher than in the ideal cascade.
Analyzing the results obtained, one can compute the cascade

efficiency coefficient g ¼ ð
P

dUÞid=ð
P

dUÞopt ¼ 0.973 that takes into
account non-ideality of a cascade profile and mixing losses connected
with it. We can also compute the quantity gð

P
dU=LÞopt=ð

P
dU=LÞid ¼

1.63. Therefore, we have shown that despite the fact that the cascade
efficiency coefficient is less than unity, the sum of the specific separation
powers in an optimum cascade becomes significantly higher in compari-
son with that for ideal one.

It means that all separation stages in the optimum cascade work
more effectively and therefore, the total flow in such a cascade becomes
lower considerably in contrast to the ideal one. Besides, comparing the
cut values in both cascades under investigation, one can see that in the
optimal cascade they are more attractive from a technological point of
view because of slightly varying over cascade stages.

Recently it has been demonstrated that the value of a total flow in the
ideal cascade with symmetric elements and the overall separation factors

Table 6. Parameters of the corresponding optimum cascade with the equal
external parameters as in the ideal type 3 cascade

L, g=s h C, % Cþ , % C� , % dU, g=s (dU=L) � 102

19.74 0.300 0.52 0.71 0.44 0.4775 2.42
33.09 0.404 0.65 0.83 0.52 0.8868 2.68
44.87 0.395 0.78 1.01 0.63 1.1967 2.67
29.97 0.443 1.01 1.28 0.81 0.8131 2.71
21.99 0.442 1.29 1.62 1.02 0.5966 2.71
15.64 0.442 1.64 2.06 1.30 0.4242 2.71
10.55 0.440 2.09 2.63 1.67 0.2860 2.71
6.41 0.432 2.68 3.38 2.15 0.1735 2.71
2.77 0.361 3.38 4.40 2.80 0.0721 2.60P

L=P ¼ 185.03
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higher than 5–6 is greater that in the optimum cascade (14). It is
explained by the considerable difference of the cut values in the ideal
and optimum cascades for the large overall separation factors (see Fig. 1).

CONCLUSIONS

1. The classification for ideal cascades with fixed values of
N; f ; q;CF ;CP is developed. Depending on the character of variation
of the concentration of a key component in product and waste flows
on the cut at the first stage of a cascade h1, all ideal cascades are
divided into four groups characterizing various relations between
numbers of stages in enriching and stripping sections of a cascade.

2. It is found that for all four groups of ideal cascades the optimum
value of h1 is introduced ensuring the minimum total flow in a cascade
exists.

3. It is shown that the total flow in a cascade, in which the condition
a ¼ b ¼ ffiffiffi

q
p

is valid for all separation elements, coincides with the
total flow in an ideal cascade for arbitrary values of q close to unity.
For overall separation factors considerably higher than unity, the dis-
tinction between ideal and optimal cascade is essential.

4. It is established that in the case of symmetrical separation elements,
the non-mixing condition prevails over the condition of optimum
(from the point of view the separation power) operating work of a sin-
gle separation element. Under this condition, the concepts of ideal and
optimum cascades coincide. For the cascade of non-symmetrical ele-
ments, the condition of the optimum work of a single separation
element prevails over the non-mixing condition that leads to diver-
gence in the values for the total flows in ideal and optimum cascades
that increase with growth of the value for the overall separation factor
q. This explains the well-known practical rule according to which non-
symmetrical separation stages with big overall separation factors are
preferable to connect by a non-symmetric scheme.
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